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EXECUTIVE SUMMARY 

Geospatial models for predicting soil liquefaction infer subsurface traits via satellite 

remote sensing and mapped information, rather than directly measure them with subsurface tests. 

Field tests of such models have demonstrated both promising potential and severe shortcomings. 

Informed by these tests, this study developed geospatial models that are driven by algorithmic 

learning but pinned to a physical framework, thereby benefiting from both machine and deep 

learning, or ML/DL, and the knowledge of liquefaction mechanics developed over the last 50 

years. With this approach, subsurface cone penetration test (CPT) measurements are predicted 

remotely within the framing of a popular CPT model for predicting ground failure. This has three 

potential advantages: (i) a mechanistic underpinning; (ii) a significantly larger training set, with 

the model principally trained on in-situ test data, rather than on ground failures; and (iii) insights 

from ML/DL, with greater potential for geospatial data to be exploited.  

While liquefaction is a phenomenon best predicted by mechanics, subsurface traits lack 

theoretical links to above-ground parameters but correlate in complex, interconnected ways—a 

prime problem for ML/DL. Preliminary models were trained using ML/DL and a modest U.S. 

dataset of CPTs to predict liquefaction-potential-index values via 12 geospatial variables. The 

models were tested on recent earthquakes and were shown—to a statistically significant 

degree—to perform as well as, or better than, the current leading geospatial model. The models 

are coded in free, simple-to-use Windows software. The only input is a ground-motion raster, 

downloadable minutes after an earthquake or available for countless future scenarios. This gives 

the product near-real-time capabilities, such that ground failure may be predicted across the 

PacTrans Region 10 (e.g., the State of Washington) minutes after an event.  

Ultimately, the proposed approach and models, which warrant further application and 

evaluation, could be improved upon using additional training data and new predictor variables. 

Users of the models should understand key limitations, as discussed in detail herein. To 

demonstrate application to transportation networks, ground failure probabilities, considering 30 

ground-motion simulations of a magnitude 9, Cascadia Subduction Zone earthquake, were 

computed for 5,020 Washington state bridges in the National Bridge Inventory. These analyses, 

as detailed and mapped herein, indicated that of the 5,020 bridges: (i) 13 bridges had at least a 70 

percent probability of ground failure; (ii) 218 bridges had at least a 60 percent probability of 

ground failure; and (iii) 795 bridges had at least a 50 percent probability of ground failure. These 
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analyses did not consider specific asset designs or site-specific ground improvement works that 

may or may not have been carried out. The analyses did, however, provide a ranked list of bridge 

sites most likely to be damaged by ground failure. Select ground-truthing lent credence to the 

developed models and predictions. These predictions may be further investigated (e.g., via 

network analyses) to identify critical corridors likely to experience outages and/or to prioritize 

bridges for more advanced studies and possible earthquake retrofitting.   

The models resulting from this project thus allow liquefaction-induced ground failure to 

be predicted rapidly, remotely, and at regional scale, either in advance of an event for planning 

and mitigation, or minutes after an event for response and recovery. 
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CHAPTER 1. INTRODUCTION 

As evidenced by earthquakes occurring globally each year, reliable predictions of soil 

liquefaction are needed both before an earthquake for efficient planning and mitigation and 

immediately after an earthquake for informing response, reconnaissance, and recovery. Such 

predictions would thus ideally have the capability of being made (i) rapidly (e.g., in near-real-time 

after an event); (ii) at high resolution (e.g., consistent with the scale of individual assets); and (iii) 

over the regional extents impacted by large earthquakes (e.g., that of a metropolis or transportation 

system). Problematically, state-of-practice liquefaction models require relatively costly 

geotechnical data, such as that from the cone penetration test (CPT). Given the infeasibility of in-

situ testing across vast areas, regional-scale predictions of liquefaction (e.g., at regionally 

distributed bridge locations) have traditionally relied on geologic maps, from which generic 

classifications of liquefaction susceptibility may be assumed (e.g., Youd and Hoose, 1977). Such an 

approach is simple but also unacceptably uncertain for most intents.  

Alternatively, statistical distributions of geotechnical data within geologic units may be 

developed and used to predict liquefaction (e.g., Holzer et al., 2011). This is more data-driven and 

likely to be more accurate, but many in-situ tests are still required within each mapped unit of 

interest. Moreover, predictions using this approach have the coarse resolution of geologic maps and 

assume intra-unit uniformity (i.e., local conditions are not considered), meaning an entire city could 

potentially receive the same prediction. It thus remains a persistent challenge to model liquefaction 

(or any geohazard) in a manner that is regional and rapid, yet high resolution and accurate. The 

existence of a model having these traits is conceivable, however, given the growth of community 

geotechnical datasets, remote sensing, and algorithmic learning (i.e., machine and deep-learning, or 

ML/ML).  

Toward that end, interest has grown in prediction models that use inputs readily available 

from satellite remote-sensing and existing, mapped information. In contrast to geotechnical 

methods, “geospatial” models can predict liquefaction rapidly, at infinitely many locations. This is 

made possible using geospatial proxies of soil properties relevant to liquefaction (i.e., above-ground 

inferences of below-ground conditions). While the concept of such a model is not new (e.g., 

Kramer, 2008; FEMA, 2013), the model of Zhu et al. (2017), lightly modified by Rashidian and 

Baise (2020), is arguably the most rigorously formulated and widely accepted. It is also 

implemented in the United States Geological Survey (USGS) “PAGER” system, which provides 
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content on possible earthquake impacts (Wald et al., 2008). In a recent study, Geyin et al. (2020) 

tested the Zhu et al. (2017) model against 18 CPT-based models using ~15,000 liquefaction case 

histories (essentially all CPT-based case histories globally available to date). These analyses 

elucidated the provocative potential of geospatial data, as well as significant room, and potential 

means, for improving existing geospatial models. Informed by these analyses, this  study aimed to 

develop an improved geospatial model driven by algorithmic learning (benefiting from ML/DL 

insights) but pinned to a physical framework (benefiting from mechanics and the knowledge of 

regression modelers). In the following, the typology of liquefaction models is succinctly 

summarized (to place this project, and the methods it utilized, in context). Next, tests of the Zhu et 

al. (2017) model are summarized and lessons for improvement are discussed, as are the advantages 

of the proposed approach. This approach was then used to develop three ML/DL models that 

predict the probability of liquefaction-induced ground failure. Finally, these models were tested 

using unbiased data and implemented in RapidLiq, a new Windows software program.  

1.1. A Succinct Overview of Geotechnical and Geospatial Liquefaction Models 

The typology of models for predicting liquefaction roughly consists of  three tiers: (Tier 1) 

fully-empirical models that require only geospatial or geologic information (e.g., Rashidian and 

Baise, 2020); (Tier 2) semi-mechanistic “stress-based” models that require in-situ test data and are 

widely used in engineering practice (e.g., Boulanger and Idriss, 2014; Green et al., 2019); and (Tier 

3) numerical constitutive models, which require many material and model parameters (e.g., 

Cubrinovski and Ishihara, 1998; Ziotopoulou and Boulanger, 2016). While improvements to 

computational throughput have grown the use of “Tier 3” models, their application is still limited to 

specific sites and special projects, given the required inputs and operator skill. Given the rapid and 

regional scale aims of the proposed work, “Tier 3” models will not be used herein, which is not to 

say that such models could not conceivably be implemented at regional scale.   

Many “Tier 2” models are popular in engineering practice. These include, among others, 

Robertson and Wride (1998), Moss et al. (2006), Idriss and Boulanger (2008), Boulanger and Idriss 

(2014), and Green et al. (2019), which all use data from the CPT to predict liquefaction as a 

function of earthquake magnitude (Mw) and peak ground acceleration (PGA). However, because 

these models predict the factor of safety against liquefaction “triggering” (FSliq) at-depth within a 

profile, the outputs are often used cooperatively with other models that predict manifestations of 
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liquefaction at the surface (i.e., “ground failure”). One popular manifestation model is the 

liquefaction potential index (LPI), proposed by Iwasaki et al. (1978): 

𝐿𝐿𝐿𝐿𝐿𝐿 =  ∫ 𝐹𝐹(𝐹𝐹𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙) ∙ 𝑤𝑤(𝑧𝑧) d𝑧𝑧20 𝑚𝑚
0                                                            (Eq 1) 

where F(FSliq) and w(z) weight the respective influences of FSliq and depth, z, on surface 

manifestation. Specifically, F(FSliq) = 1 – FSliq for FSliq ≤ 1 and F(FSliq) = 0; otherwise, w(z) = 10 – 

0.5𝑧𝑧. LPI thus assumes that surface manifestation depends on the thickness of all liquefied strata in 

the upper 20 m, the degree to which FSliq in each stratum is less than 1.0, and how near those strata 

are to the surface. LPI can range from zero to 100, with surface manifestations becoming more 

likely as LPI increases (e.g., Maurer et al., 2014; Geyin and Maurer, 2020a). Other similar 

manifestation models include those of van Ballegooy et al. (2014) and Maurer et al. (2015a). 

 “Tier 1” geospatial models, which aim to predict liquefaction via readily available predictor 

variables, have recently received renewed attention. Like “Tier 2” models, geospatial models 

characterize liquefaction demand via ground-motion intensity measures (IMs) (e.g., PGA). But, 

instead of quantifying liquefaction resistance with in-situ measurements, geospatial models predict 

below-ground conditions using above-ground information. Examples of such predictors include 

(among many) the slope and roughness of the surface; the distance to rivers and coasts; and 

compound-topographic-index, which can be derived from satellite data or existing prediction maps. 

Geospatial models are well suited for regional scale applications such as (i) loss estimation and 

disaster simulation; (ii) city planning and policy development; (iii) emergency response; and (iv) 

post-event reconnaissance (e.g., to remotely identify sites of interest). 

The geospatial model originally proposed by Zhu et al. (2017) is a logistic regression model 

of the form P(X) = (1 + e-X)-1 where X is a sequence of predictor variables and coefficients, and 

P(X) is the likelihood of ground failure (i.e., surface manifestation). The model, which was trained 

on observations of ground-failure, takes on two forms depending on a site’s vicinity to a coastline. 

The equations for model parameter X are in table 1.1. The variables are PGV = peak ground 

velocity (cm/s); VS30 = shear-wave velocity of the upper 30-m (m/s) predicted from topography 

(Wald and Allen, 2007); dr = closest distance to a river (km) in the Lehner et al. (2006) dataset; dc 

= distance to coast (km); dw = the lesser of dr and dc (km); precip = mean annual precipitation 

(mm) (Fick and Hijmans, 2017); and wtd = predicted water table depth (m) (Fan and Miguez-

Macho, 2013). Following additional testing, Rashidian and Baise (2020) proposed two minor 
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modifications to mitigate false positive predictions: (i) the model’s output should be reassigned as 

zero below a PGA of 0.1 g; and (ii) the precip input should be capped at 1700 mm/yr. 

Table 1.1 Geospatial model equations (Zhu et al., 2017; Rashidian and Baise, 2020) 
Model Model Parameter X 

(Coastal) 
12.435 + 0.301·ln(PGV) – 2.615·ln(Vs30) + 5.556 x 10-4 · precip – 0.0287·(dc)0.5 + 

0.0666·dr – 0.0369 · dr · (dc)0.5 

(Inland) 8.801 + 0.334·ln(PGV) – 1.918·ln(Vs30) + 5.408 x 10-4 · precip – 0.2054·dw – 0.0333·wtd 

1.2. A Test of Geospatial Liquefaction-Model Performance 

Using approximately 15,000 liquefaction case histories compiled from 23 earthquakes by 

Geyin et al. (2021) and Geyin and Maurer (2021a), Geyin et al. (2020) tested the Zhu et al. (2017) 

geospatial model against 18 different CPT methods for predicting liquefaction surface 

manifestation. These comprised six different triggering models used in series with three different 

manifestation models. Because most of the case histories were sourced from three events in 

Canterbury, New Zealand, test cases were parsed into the “Canterbury” and “Global” datasets. 

Performance was quantified via receiver-operating-characteristic (ROC) analyses – specifically the 

area under the ROC curve, or AUC—which is a popular metric of prediction efficiency (e.g., 

Fawcett, 2006). Using this metric, a perfectly efficient model achieves an AUC of 1.0, whereas a 

model on par with random guessing achieves an AUC of 0.5. ROC analyses are also attractive in 

that they are insensitive to changes in class distribution. If the proportion of negative to positive 

instances in a test set changes, the AUC results will not change (Fawcett, 2006). P-values were 

computed per the method of DeLong et al. (1988) to determine whether measured differences in 

AUC could have arisen by chance (i.e., due to finite-sample uncertainty) and not because one model 

was more efficient than another.  

While the reader is referred to Geyin et al. (2020) for complete details, the most salient 

results are summarized as follows. First, on the “Canterbury” dataset, the geospatial model 

performed significantly better than 16 out of 18 CPT models, with a measured AUC of 0.84. 

Against the top two CPT models, it was statistically indifferent, and thus either outperformed or 

matched all 18 CPT models. This was a surprising result, given the relative costs of the required 

model inputs. Second, on the “Global” dataset, all geotechnical models performed significantly 

better than the Zhu et al. (2017) model, with the latter performing only somewhat better than 
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random guessing with an AUC of 0.55. This might be expected, given (i) the variation of 

geomorphic, topographic, and climatic environs in a global dataset; and (ii) the challenge, given this 

variation, of accurately predicting below-ground conditions from above-ground parameters. 

Inherently, the CPT models—being based on subsurface tests—should be more portable across 

environments. Nonetheless, the strong performance of the seminal Zhu et al. (2017) model in 

Canterbury demonstrated the promising potential of geospatial data for regional-scale purposes, a 

conclusion similarly reached by Lin et al. (2021b). 

1.3. Limitations of Existing Geospatial Modelling Approaches 

By way of the study above, possible shortcomings of the Zhu et al. (2017) and Rashidian 

and Baise (2020) geospatial model, henceforth referred to as RB20, were identified. It should be 

emphasized that this model transformed the perception of geospatial modeling for geohazards. 

Nonetheless, like all models, it has shortcomings that could be improved upon.  

First, RB20 was trained directly on outcomes (i.e., observations of ground failure) rather 

than on the mechanistic causes of those outcomes (i.e., subsurface engineering properties). While 

this lack of a mechanistic underpinning can be overcome with vast training data (e.g., how voice 

transcription apps predict words without understanding language), current ground failure 

inventories are arguably too sparse. Specifically, both “positive” and “negative” cases (i.e., sites 

with and without observed liquefaction) are needed in which predictor variables span the range of 

possible values. That is, the parameter space of all predictor variables should be fully populated. 

Yet, while liquefaction is common in earthquakes, ground failure inventories are slow to grow 

(relative, for example, to those of in-situ test data). Given the adopted approach, inadequate training 

data can result in a divergence from mechanistic principles (e.g., prediction of liquefaction given 

shaking too weak, from a mechanistic perspective, to induce liquefaction).  

Second, RB20 uses just five variables. Four represent capacity (distance to surface water; 

precipitation; and mapped VS30 and groundwater depth) and one represents demand (PGV). Notably, 

none of these variables is likely to correlate to the type of soil, or by corollary, to the susceptibility 

of the soil to liquefaction. This was a common cause of mispredictions identified in the Geyin et al. 

(2020) study, with RB20 expecting susceptibility if the ground is flat, saturated, and near water. 

However, such profiles can consist mostly of soils less- or un-susceptible to liquefaction (e.g., 

clays, peats, or gravels). Moreover, we find in many such cases that geologic maps accurately 
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predict the presence of such soils. An improved model might thus use mapped geologic data, when 

available, and/or other yet unidentified proxies of soil type.  

Third, and following from the above, RB20 is a traditional regression equation. This method 

of modeling inherently requires hypotheses of what is believed to matter and how (beliefs that are 

unnecessary with ML/DL). The efficient prediction of subsurface traits likely requires more than 

four geospatial variables, yet regression limits the number easily modeled. Algorithmic learning 

would allow more geospatial predictor variables to be used, with greater potential for those 

variables/data to be exploited fully. 

1.4. The Proposed Modelling Approach and its Potential Benefits 

This project proposed a new geospatial modeling approach that is driven by algorithmic 

learning but pinned to an established mechanistic framework. Specifically, ML/DL models would 

be trained to predict LPI values in the absence of subsurface test data. Before model training, LPI 

values would be computed from a national database of in-situ geotechnical tests subjected to a 

range of hypothetical ground motions. During model training, the ML/DL models would learn to 

predict these LPI values using 12 predictor variables. These variables would consist of PGA and 

Mw, which are “demand” variables, and ten geospatial parameters from the geotechnical test site, 

which are “capacity” variables. The goal of these ten geospatial variables, in effect, would be to 

predict the relationship between LPI and seismic loading in the absence of subsurface data. 

Multiple models would be developed and ensembled, thereby avoiding large “swings” on account 

of which model was chosen (as is common in prediction of ground motions, hurricane tracks, etc.). 

When used in the forward direction, the trained models would predict LPI at sites without 

geotechnical testing, given PGA, Mw, and geospatial variables sampled at the coordinates of the 

sites. To complete the prediction of ground failure, the predicted LPI values would be input to 

existing fragility functions (Geyin and Maurer, 2020a) that predict the probability of liquefaction 

manifestation (i.e., “ground failure”) as a function of LPI. These functions would be trained on a 

large database of well-documented liquefaction case histories compiled from 24 global earthquakes. 

Thus, the ultimate output would be a predicted probability of ground failure (the same as RB20). A 

synopsis of the proposed approach is shown in figure 1.1.   
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Figure 1.1 Synopsis of the approach to predicting probability of ground failure (PGF) 

 
This approach had several potential advantages. 

First, the principal prediction target was transferred from ground failure (with relatively 

sparse training data) to subsurface measurements (for which the potential training set was vast). 

Because the location of in-situ tests need not have experienced an earthquake (i.e., be a liquefaction 

case history), significantly more training data were available. Given the rise of community 

geotechnical datasets—both internationally and in the U.S.—the gap between the number of 

subsurface tests and the number of liquefaction case histories will likely grow. We hypothesized 

that this larger training set would be advantageous, both now and in the future.  

Second, liquefaction is a physical phenomenon best predicted by mechanics. Much has been 

learned about liquefaction over the last 50 years. This knowledge is embedded in current state-of-

practice liquefaction triggering and manifestation models. We hypothesized that anchoring to these 

models, which provide a mechanistic foundation, would be advantageous, given their validated 

ability to model liquefaction response as a function of soil and profile traits (e.g., subsurface 

stratigraphy, soil density, fines-content, plasticity, saturation, ground motion duration and 

intensity).  

Third, whereas liquefaction is best predicted by mechanics, subsurface traits lack theoretical 

links to above-ground parameters (i.e., geospatial data), but surely correlate to them in complex, 

interconnected ways. This is a prime problem for ML/DL, which can provide learning insights that 

are simply unlikely, if not altogether infeasible, with regression approaches. We hypothesized that 

ML/DL would provide the potential for geospatial data to be exploited more fully.  

Fourth, the models could be updated relatively easily as additional training data (in-situ 

tests) become available. In the short term, some geospatial variables could be viewed by the 

learning algorithms as relatively unimportant, either because they truly were unimportant or 

because there was insufficient training data to elucidate their predictive value. The RB20 model for 
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predicting ground-failure is also retrainable, but we hypothesized that meaningful growth in the 

ground-failure dataset would take place at a slower pace (e.g., with data from a few events annually 

that impact a small fraction of Earth).   
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CHAPTER 2. MODEL DATA AND METHODOLOGY 

In the current effort, two models were developed using relatively modest sets of training 

data and predictor variables compiled in the United States (U.S.). As will be discussed, the 

proposed approach could be extended by using additional training data and new predictor variables 

at regional, national, or global scales. Nonetheless, the developed models, which are applicable to 

the U.S., were shown to be at least as efficient as other geospatial models and thus warrant 

application and further evaluation, even if preliminary in nature.  

While several in-situ geotechnical tests could be used within the proposed approach, we 

chose CPT data, given that (i) it has inherent advantages over other tests upon which liquefaction 

models have been based (NRC, 2016); (ii) the Geyin and Maurer (2020a) fragility functions were 

trained on CPT-based case histories; and (iii) a U.S. national CPT database is readily available in 

native digital format. Specifically, the USGS national database of 1,712 CPTs (USGS, 2021) was 

adopted for analysis. This dataset provided somewhat well-distributed measurements, as mapped in 

figure 2.1, in a range of environments, generally in high-seismicity regions. Approximately 5 

percent were from sites where liquefaction case histories were compiled following modern 

earthquakes. Given the limited dataset, some regions of the U.S. were unrepresented in model 

development, as shown in figure 2.1. Ultimately, however, tests of the derivative geospatial models 

were not clearly suggestive of regional bias (i.e., the models performed well in regions with no 

training data). Nevertheless, it stands to reason that an expanded dataset would result in better 

models. Of the 1,712 CPTs, 20 percent were randomly selected and reserved for model testing, 

while the remaining 80 percent were used for model training.  
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Figure 2.1 Spatial distribution of CPT training and test data 
 

Next, each CPT was subjected to 152 combinations of PGA and Mw, with PGA ranging from 

0.0 g to 1.0 g and Mw ranging from 4.5 to 9.0. These represented loadings that could hypothetically 

impact a site and for which it would be of interest to predict liquefaction. We excluded Mw < 4.5 

events based on Green and Bommer (2019). With the proposed approach, however, it was irrelevant 

whether the CPT sites ever experienced an earthquake or whether a specific combination of PGA 

and Mw could feasibly occur in the future. In other words, we assumed that subsurface conditions 

were generally independent of the seismic hazard (i.e., saturated, loose, cohesionless soils are 

equally present in high seismicity regions as in low seismicity regions). As such, it was not 

necessary that CPTs be subjected to site-specific combinations of PGA and Mw that were more 

likely to occur (e.g., according to a probabilistic seismic hazard analysis). For each combination of 

PGA and Mw, the Idriss and Boulanger (2008) CPT liquefaction model was used to predict FSliq 

versus depth. These predictions were then input to the LPI manifestation model, as defined in 

Equation. 1. All CPT processing and calculations were performed using the software Horizon 

(Geyin and Maurer, 2020b). While different, or additional, triggering and/or manifestation models 

could be used, the Idriss and Boulanger (2008) triggering model—when used in conjunction with 

LPI—demonstrated an efficiency that was never bested, to a statistically significant degree, by any 

other model when tested on global case-history data (Geyin et al., 2020). In addition, the 

magnitude-scaling factor (MSF) inherent to Idriss and Boulanger (2008) was soil-independent, 
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whereas other triggering models (Boulanger and Idriss, 2014; Green et al., 2019) had MSFs that 

varied with depth depending on the inferred relative density. The more predictable scaling of 

computed LPI with increasing Mw was deemed advantageous for modeling, given the limited 

training data utilized herein. A subsequent study could explore the use of other CPT models, 

although previous testing of such models (Geyin et al., 2020) suggested that the efficacy of the 

resulting product would be very similar.  

Given the 1,712 CPTs and 152 combinations of seismic loading, a total of 260,224 LPI 

values were computed. These values are plotted in figure 2.2 as a function of magnitude-scaled 

PGA (PGAM7.5), as computed by Idriss and Boulanger (2008), and they formed the primary 

prediction target of the proposed modeling approach. At sites of high liquefaction hazard (i.e., thick 

deposits of saturated, loose sand), LPI increased rapidly with PGAM7.5, whereas at sites of low 

hazard (i.e., sites devoid of soil susceptible to liquefaction), LPI could remain near zero for all 

PGAM7.5. The goal of the geospatial modeling, in effect, was to predict the relationship between LPI 

and seismic loading (PGA, Mw) in the absence of subsurface data.  

 

Figure 2.2 LPI versus PGAM7.5; plotted are 260,224 LPI values computed from 1,712 CPTs 
subjected to 152 different levels of seismic loading 

 
Ten geospatial predictor variables were next compiled at the coordinates of each CPT. The 

goal of these ten variables was to correlate to the subsurface conditions that give rise to low or high 

LPI. These consisted of predicted VS30 (Heath et al., 2020); predicted ground water depth (Fan and 

Miguez-Macho, 2020); measured distance to a river (Lehner et al., 2006) and measured distance to 

the coast (NASA, 2012); predicted depth to bedrock (Shangguan et al. 2017); measured annual 
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precipitation (Fick and Hijmans, 2017); and the predicted (binomial) presence of unconsolidated 

soil, sandy soil, clayey soil, and silty soil, as obtained from the USGS National Geologic Map 

compilation (Horton et al. 2017). The intention of the latter four variables was to predict whether 

soil was present, and if so, whether it had one of these three predominant soil types. Additional 

mapped soil types were ultimately found not to be useful, as will be further discussed. The range of 

predictor variables in the dataset and their spatial resolutions are given in table 2.1.  

Table 2.1 Range of predictor variables in the dataset and their spatial resolutions 

Variable (Units) Range in 
Dataset 

Spatial 
Resolution 

Earthquake Magnitude (Mw) 4.5 to 9 N/A 

Peak Ground Acceleration (g) 0 to 1 N/A 

Ground Water Table Depth (m) 0 to 216 
~1000 m 

(30 arc-sec) 

Distance to River (m) 2 to 6,220 
~90 m  

(3 arc-sec) 

Distance to Coastline (km) 0 to 1,210 
~90 m  

(3 arc-sec) 

Depth to Bedrock (cm) 379 to 21,717 250 m 

Annual Precipitation (mm) 68 to 1,389 
~1000 m 

(30 arc-sec) 

VS30 (m/s) 92 to 713 
~1000 m 

(30 arc-sec) 

Unconsolidated Soil (binomial) 0 or 1 
25 m to 

500 m 

(varies) 

Dominant Clay (binomial) 0 or 1 

Dominant Silt (binomial) 0 or 1 

Dominant Sand (binomial) 0 or 1 

 

In lieu of predicted VS30, we also explored the use of measured topographic slope, which 

ultimately produced models with nearly identical performance. This was unsurprising, given that 

VS30 was most often predicted solely from topographic slope in the Heath et al. (2020) compilation, 

which merged several regional VS30 maps with a general slope-based VS30 model. However, we 

adopted the predicted VS30 from Heath et al. (2020), given that it included region-specific insights 

into the relationship between topographic slope and subsurface conditions. While the potential 

benefits of using VS30 from Heath et al. (2020) (i.e., versus topographic slope) were not realized 
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during model training and testing, such benefits could conceivably be observed in future, forward 

applications elsewhere. Notably, models developed without either parameter performed 

significantly worse. The importance of each predictor variable will be further discussed later in the 

paper.   

Using the training set (80 percent of CPTs), models were next developed to remotely predict 

LPI as a function of PGA and Mw, which could be viewed as “demand” variables, and of the ten 

geospatial variables, which could be viewed as “capacity” variables. The latter could be compiled at 

national scale in advance of model application. The former are available at regional scale minutes 

after an earthquake (e.g., via a single “ShakeMap” file (Wald et al., 2005)) or for various future 

earthquake scenarios. Like other geospatial models, this gives the model near-real-time 

functionality, such that ground failure could be predicted at regional scale minutes after an event. 

Various ML/DL techniques were explored, including Gaussian process models (e.g., Rasmussen 

and Williams, 2006); support vector machines (SVM) (e.g., Vapnik, 1995); decision trees (e.g., 

Rokach and Maimon, 2008); model ensembles with bagging, gradient boosting, or random forests 

(e.g., Breiman, 1996; Piryonesi et al., 2021; Ho, 1998); and neural networks (e.g., Glorot et al., 

2010). In general, modeling approaches that are easier to interpret tend to have lower predictive 

accuracy (e.g., single decision trees, support vector machines), while those with higher accuracy 

(e.g., neural networks or ensembles of decision trees) are typically very complex to interpret. Each 

approach has numerous options and internal parameters (i.e., “hyperparameters”) (e.g., neural net 

optimization algorithm, activation function, and layer quantity and size; regression tree leaf size; 

Gaussian basis and kernel functions; SVM kernel scale and box constraint).  

Once promising models had been identified, hyperparameter optimization was employed, 

such that the hyperparameter values that minimized the model error were identified via an 

automated optimization scheme. five-fold cross-validation was used to control overfitting, as is 

common in model development. Additionally, training and test performance metrics were compared 

for signs of overfitting (i.e., better training performance than test performance), which was inferred 

when performance metrics from the training and test sets differed by at least 4 percent. In this 

regard, models with slightly lower accuracy but without overfitting were favored over models that 

achieved the highest training accuracy but with suspicion of overfitting. Because many ML/DL 

algorithms either require or perform better when variables have a Gaussian distribution, all 

predictors were BoxCox transformed (Box and Cox, 1964) and normalized to have values of 
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between 0 and 1. Ultimately, the software in which the prediction models were implemented 

performed all necessary computations, and as such, no pre-processing of data were required (e.g., 

predictor variables were input in their native format).  
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CHAPTER 3. MODEL RESULTS AND DISCUSSION 

Using the aforementioned methodology with relatively modest sets of training data and 

predictor variables, several dozen preliminary models were trained. Of these, two were ultimately 

adopted for further implementation and testing. The first model adopted was a boosted ensemble of 

decision trees, wherein numerous relatively weak models are coalesced to form one high-quality 

model. For brevity, we henceforth refer to it as the “ML model.” The theory and algorithm 

underlying this approach – which is commonly included in machine learning toolkits (e.g., Scipy, 

TensorFlow)—was explained in detail by Friedman (2001). An excellent overview of its practical 

implementation was provided by Elith et al. (2008). The growth of a decision tree involves 

establishment of recursive binary splits, such that specific combinations of model inputs map to a 

predicted output. However, because a single tree is prone to overfitting and tends not to be very 

accurate, models that ensemble many decision trees are preferred. In “gradient boosting,” a strong 

learner is sequentially built from weak learners, wherein each tree attempts to diminish the errors of 

the previous tree by gradually increasing emphasis on observations poorly predicted by the 

ensemble. While gradient boosting is slow, it generally produces a more accurate model than other 

assembling algorithms (e.g., bagging or random forests) (Piryonesi et al., 2021). With respect to 

performance, the ML model achieved a mean absolute error (MAE) (LPI units) of 3.58 and 3.72 on 

the training and test sets, respectively, as summarized in table 3.1. As discussed previously, the 

unbiased test set consisted of LPI data from CPT sites unknown to the model during training.  

The second adopted model was a deep (seven-layer) artificial neural network, which we 

henceforth refer to as the “DL model.” With roots in the 1980s (e.g., Hopfield, 1982), this now 

ubiquitous approach mimics the perceived structure of the human brain, with layers of 

interconnected nodes. At the most basic level, DL models have four components: inputs, weights, a 

threshold, and an output. Connections between nodes are modelled as weights, such that positive 

and negative weights indicate excitatory and inhibitory connections, respectively. If the output from 

an individual node is above a specified threshold, the node is activated, sending data to the next 

layer of the network. An activation function then controls the amplitude of the output at each node. 

As DL models have multiple layers, the above process is repeated multiple times, with each layer 

potentially passing information from the previous layer to the next. During training, the weights are 

iteratively adjusted to optimize model performance. Like the ML model, DL models are quite 

convoluted, rendering simple interpretations of the inner workings infeasible, since single node 



 

16 

weights have little physical meaning, and since millions of connections may be present in a model. 

As shown in table 3.1, the DL model achieved an MAE of 4.13 and 4.20 on the same respective 

datasets (i.e., it performed slightly worse than the ML model). Given the limited training set and 

preliminary nature of the ML and DL models, we also created a third “Ensemble model" by 

averaging the outputs of the ML and DL models. The merging of two models with different 

structures could have the effect of “stabilizing” predictions and, conceivably, provide benefits 

unrealized during testing. As shown in table 3.1, the ensemble performed better than the DL model 

and worse than the ML model, although all were similarly efficient when considering the range of 

the LPI domain (i.e., zero to 100). The performance of these models, and other results in table 3.1, 

will be further discussed momentarily.   

 

Table 3.1 Summary of model performance (mean absolute error) on the training, test, and overall 
datasets 

Model 
Mean Absolute Error (LPI Units) Mean Absolute Error (Probability Units) 

Training Test Overall Training Test Overall 
ML 3.5814 3.7237 3.6642 7.1691 7.6482 7.3698 
DL 4.1329 4.2097 4.175 8.6918 8.9609 8.7894 

Ensemble 3.743 3.8499 3.8039 7.6491 8.0338 7.7967 
 

While the convoluted nature of ML/DL models tends to obscure simple interpretations of 

model function (e.g., relative to traditional regression), insights into the ML decision-tree ensemble 

can be gained via predictor importance (e.g., Auret and Aldrich, 2011), which may be interpreted as 

the relative contribution of each variable to model accuracy. Accordingly, the relative importance of 

each variable was computed, and it is plotted in figure 3.1, where variables are sorted from most to 

least important. This approach and presentation mirrors that of Durante and Rathje (2021), who 

explored the ML prediction of lateral spreads using geospatial data. As could be expected, the 

magnitude-scaled PGA and predicted groundwater depth had the largest importance, given the 

mechanistic relationship between these inputs and computed LPI. Also of relatively large 

importance were the measured distance to a river and predicted depth to the bedrock, which 

correlated to the expected thickness and geomorphology of deposits. Bedrock at shallow depth 

limits LPI ,while bedrock at very large depth suggests the presence of a sedimentary basin, which 

tends to collect sands and silts in a low-velocity flow regime. The presence of a nearby river, 

particularly in combination with flat topography, suggests a similar geomorphology, while also 
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indicating that the deposits are likely young and saturated. Of the compiled geologic data, the 

predicted predominance of clay was most important, whereas the predicted predominance of silt 

was least important. This aligned with expectations, given the established use of the plasticity index 

to infer liquefaction susceptibility within mechanistic models. Whereas soils classified as clay are 

rarely susceptible, silts are an intermediate soil whose liquefaction response is difficult to predict 

from name alone. We hypothesize that the overall importance of mapped soil type could increase if 

the set of training sites were larger and more diverse, given that the set used herein did not span the 

full range of geologic conditions that may be encountered. While the computed predictor 

importance gives insights into decision-tree models, we are unaware of any analogous tool for 

studying neural networks, which thus remain relatively more convoluted.  

 
Figure 3.1 Relative predictor importance ranking for the ML model 

 

Following prediction of LPI via the ML, DL, or Ensemble models, probabilities of ground 

failure were computed using the Geyin and Maurer (2020a) fragility functions, which are 

conditioned on LPI. As an example, the test and training set performance is shown in figure 3.2 for 

the ML model. Here, the “predicted probability” is the output when LPI was predicted via the 

geospatial ML model, whereas the “actual probability” is that when LPI was computed from the 

CPT data. Also shown in figure 3.2 are linear trendlines (green dotted lines), from which 
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assessments of overall prediction bias may be made. The ML model’s MAEs of 3.58 and 3.72 (LPI 

units) on the training and test sets translate to MAEs of 7.17 percent and 7.65 percent in probability 

units (table 3.1). These comparisons (i.e., predicted vs actual probabilities of ground failure) 

provide the clearest context of model performance, given that the consequences of an LPI error vary 

widely depending on the LPI value. A prediction of LPI = 17, for example, is relatively erroneous if 

the actual LPI is 2, since this translates to a ~65 percent overprediction of ground-failure probability 

(Geyin and Maurer, 2020). In contrast, a prediction of LPI = 87 is very accurate if the actual LPI is 

72, given that the probability of ground failure is nearly identical whether LPI is 87 or 72. For this 

reason, direct comparison between predicted and actual LPI values is less meaningful. As seen in 

figure 3.2, the model was generally unbiased on the training and test sets, but it did exhibit 

relatively more bias on the latter, such that the predicted probability of ground failure had an 

average tendency to be 2 percent greater than actual. This might be attributable to the dataset’s 

modest size, such that the test set had features unrepresented in training.  

 

 
Figure 3.2 Probability of ground failure: ML prediction vs. actual for the (a) training dataset and 
(b) test dataset. Green dotted lines = linear trendlines, from which prediction bias may be judged 

 
3.1. Field Application and Testing 

To demonstrate and test forward predictions at regional scale, the ML, DL, and Ensemble 

models were next used to predict ground failure in eleven U.S. earthquakes across two types of 
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datasets. Performance was assessed by using field observations and was compared against the 

Rashidian and Baise (2020) model in all events. Because of the paucity of recent, well documented 

U.S. earthquakes outside of California, these tests covered a relatively narrow geographic range. 

Further testing on future events in other U.S. regions is thus needed.  

In the first series of tests, regional scale predictions were compared to mapped observations 

of ground failure in six events: (i) 1989 Mw6.9 Loma Prieta, California; (ii) 1994 Mw6.7 Northridge, 

California; (iii) 2001 Mw6.8 Nisqually, Washington; (iv) 2003 Mw6.5 San Simeon, California; (v) 

2011 Mw5.8 Mineral, Virginia and (vi) 2016 Mw7.1 Ridgecrest, California. In these events, mapped 

observations of liquefaction-induced ground failure were obtained from the USGS Ground Failure 

Database (Schmitt et al., 2017a,b), except for observations from the 2011 Mineral and 2016 

Ridgecrest events, which were respectively obtained from Green et al. (2015) and Zimmaro et al. 

(2020). The quantities of mapped observations in these six events were, respectively, 129, 41, 44, 

12, 35, and 2. In these datasets, mapped observations were exclusively “positive” (i.e., a lack of 

liquefaction was not explicitly mapped). It was therefore assumed that liquefaction did not manifest 

if none was documented, as had been previously assumed in the development of geospatial hazard 

models (e.g., Zhu et al., 2017). While this assumption may at times be invalid and inevitably 

introduces uncertainty, it facilitates rapid, regional-scale testing across a variety of topographic and 

geomorphic environments. In this regard, we viewed performance in the context of model 

comparisons and not as an absolute measure of efficacy. Later, a separate dataset containing 

positive and negative observations at discrete sites will be discussed.  

For each earthquake, a USGS ShakeMap file with all requisite seismic data (i.e., Mw and 

mapped PGA and PGV) was obtained in .xml format. The adopted geospatial predictor variables 

were then compiled across the ShakeMap extents (i.e., the area of perceptible shaking). As an 

example, these inputs are mapped in figure 3.3 for the 1989 Loma Prieta earthquake. It can be seen 

in the final two panels of figure 3.3 that while unconsolidated soil covered ~40 percent of the study 

area, the dominant soil type was infrequently mapped as either sand, silt, or clay. Although soil 

lithology was always defined in the Horton et al. (2017) compilation, it was not always used by the 

models developed herein for one of two reasons. First, not all dominant soil types were found to be 

useful in the early stages of modelling. Some mapped soil types (e.g., marl, gravel, peat) had 

insufficient in-situ test data to elucidate and quantify the relationship between soil type and 

liquefaction hazard. Second, the mapped lithology was sometimes not predicted to a useful degree 
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of specificity (e.g., as “sand” or “clay”), but rather was defined only as “coarse detrital” or “fine 

detrital.” These broad classifications were similarly found not to be useful, which might be 

expected given that particle gradation is generally not efficient or sufficient for classifying 

liquefaction hazard. Accordingly, the model benefitted from knowledge of the mapped soil type 

when it was clay, sand, or silt, whereas if the mapped soil type was not one of these classifications, 

it was inherently treated as having a general unconsolidated character. It is likely that additional 

geologic descriptors would be useful to future models that use larger and more diverse sets of 

training data. Following compilation of the adopted geospatial predictor variables, probabilities of 

ground failure were computed using the three models developed herein and RB20. These 

probabilities are mapped in figure 3.4 for the 1989 Loma Prieta earthquake, along with observations 

of ground failure.  
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Figure 3.3 Model predictor variables mapped across the area affected by the 1989 Loma Prieta 

earthquake 
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Figure 3.4 Probabilities of ground failure for the 1989 Loma Prieta earthquake, as computed by the 

(a) RB20; (b) ML; (c) DL; and (d) Ensemble models. Black dots are observed ground failures. 

Model performance was quantified by using ROC AUC values, as is common for binomial 

classifiers, and which give equal weighting to false positive and false negative predictions. Samples 

were collected on a 100-m by 100-m grid across the ShakeMap extents. Grids wherein ground 
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failures were observed were classified as “positive” and those without any documented evidence as 

“negative.” This resulted in several million data points per event, although the exact quantity 

depended on the event’s area of influence. While the method of geospatial sampling has been 

shown to influence computed AUC values (Lin et al., 2021a) (e.g., if an equal number of positive 

and negative points were sampled instead), we found that relative performance was insensitive to 

this decision (i.e., the best and worst models were the same in each event across a range of 

sampling techniques). Plotted in figure 3.5 are ROC curves for each model in the 1989 Loma Prieta 

earthquake from which AUC values were computed. Arranged by AUC, the best performing models 

were RB20 (AUC = 0.949), Ensemble (AUC = 0.945), DL (AUC = 0.944), and ML (AUC = 0.931). 

The four models thus exhibited very similar efficiencies, with the Ensemble model slightly 

outperforming the individual ML and DL models. Following the same methodology, analyses were 

performed for the 1994 Northridge and 2001 Nisqually events, as mapped in figure 3.6, and for the 

2011 Mineral and 2016 Northridge events, as mapped in figure 3.7. A summary of model 

performance—was quantified by AUC—is presented in table 3.2 for these events and others yet to 

be discussed. It can be seen that RB20 outperformed the Ensemble model for three of the six 

events. Specifically, for Loma Prieta by 0.4 percent, for Northridge by 3.5 percent, and for 

Nisqually by 1.3 percent. Conversely, the Ensemble model outperformed RB20 for San Simeon by 

0.3 percent, for Mineral by 2.9 percent, and for Ridgecrest by 1.4 percent. The models proposed 

herein thus demonstrated efficacies similar to those of RB20 for these specific events. While these 

measured differences in performance fluctuate with different sampling techniques, the overall 

conclusion of apparently similar performance remains the same. In subsequent analyses, it will be 

determined whether these measured differences in performance were statistically significant.  



 

24 

 

Figure 3.5 Receiver operating characteristic (ROC) curves for the RB20, DL, ML, and Ensemble 
models 
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Figure 3.6 Probabilities of ground failure for the 2001 Nisqually earthquake, as computed by (a) 
RB20 and (b) the Ensemble model; and for the 1994 Northridge earthquake, as computed by (c) 

RB20 and (d) the Ensemble model. Black dots are observed ground failures. 
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Figure 3.7 Probabilities of ground failure for the 2011 Mineral earthquake, as computed by (a) 
RB20 and (b) the Ensemble model; and for the 2016 Ridgecrest earthquake, as computed by (c) 

RB20 and (d) the Ensemble model. Black dots are observed ground failures. 

Table 3.2 Summary of AUC values for events and datasets described in the text, as computed for 
the ML, DL, and Ensemble models developed herein, and for the RB20 model. 

Model 
Dataset 1 Dataset 2 

Loma 
Prieta Northridge Nisqually San 

Simeon Mineral Ridgecrest 101 Case 
Histories 

DL 0.944 0.803 0.931 0.665 0.655 0.992 0.682 

ML 0.931 0.812 0.920 0.980 0.733 0.945 0.765 

Ensemble 0.945 0.813 0.933 0.979 0.732 0.992 0.734 

RB20 0.949 0.848 0.946 0.976 0.703 0.978 0.504 
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Additional observations from figures 3.4 through 3.7 and table 3.2 are as follows. First, with 

respect to model bias, the RB20 model was either originally trained (by Zhu et al., 2017) or later 

calibrated (by Rashidian and Baise, 2020) using the same observational data adopted herein for 

testing, except for the Ridgecrest earthquake data, which postdated Rashidian and Baise (2020). In 

contrast, the ML/DL models were trained on CPTs from areas affected by the Loma Prieta, 

Northridge, and San Simeon events, but not directly on the field observations adopted for testing. 

Moreover, the Nisqually, Mineral, and Ridgecrest earthquakes provided completely blind tests of 

the ML/DL models, since no data from these events/regions were included in training. While a 

more rigorous analysis of bias was not undertaken, nor critical to the thesis of this study, we 

nonetheless note that the preceding tests were generally biased in favor of RB20.  

Second, it was observed that the DL model was relatively sensitive to predicted water table 

depth, in comparison to the ML and RB20 models. In this regard, erroneous predictions by the DL 

and Ensemble models were often associated with erroneous expectations of the groundwater depth. 

As an example, predictions for the 2003 San Simeon earthquake by the DL and RB20 models are 

mapped in figure 3.8. Specifically, an area near the towns of Oceano and Grover Beach, California, 

is shown, where numerous ground failures were observed, as mapped in figure 3.8. Because the Fan 

and Miguez-Macho (2020) model predicted a groundwater depth of ~20 m beneath the 

northernmost features, the DL model predicted a near-zero probability of ground failure, whereas 

RB20 generally predicted a probability of 5 to 15 percent. Due largely to this behavior, the DL and 

RB20 models had respective AUCs of 0.665 and 0.976 for this event. To assess the influence of 

more accurate inputs, nearby well measurements were obtained from the California Department of 

Water Resources (DWR, 2020), indicating that groundwater was shallower in this area than 

expected by Fan and Miguez-Macho (2020). Using this more accurate input, the models were rerun, 

as mapped in figure 3.8. While the RB20 and ML models correspondingly displayed slight 

improvements (~1 percent increase in AUC), the DL model’s AUC increased nearly 30 percent to 

0.990. Similar behavior could be observed in other events at a lesser scale, from which we 

concluded that the performance of the DL model would likely improve with more accurate 

groundwater maps.   

Third, considering the three models developed herein, the Ensemble model outperformed 

both the ML and DL models in three events. The ML model performed best in two other events, 

and in the last event the DL and Ensemble models tied for best performance. Considering all tests 
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(i.e., both the blind prediction of LPI and the regional-scale prediction of ground failure), the DL 

model lacked statistical support for individual use. Accordingly, and in conjunction with the DL 

model’s sensitivity to groundwater data, we recommend adoption of the ML or Ensemble models. 

Ultimately, additional tests in other events, and ideally additional model training and 

improvements, are needed before one model is recommended over another. 

 
Figure 3.8 Probabilities of ground failure in the 2003 San Simeon earthquake, with and without 
correction of measured ground water table (GWT) depths: (a) RB20 before GWT correction; (b) 

RB20 after GWT correction; (c) DL model before GWT correction; and (d) DL model after GWT 
correction. Black dots are observed ground failures. 

 
Toward that end, a second dataset of 101 well-documented liquefaction case histories was 

also used to test performance. These cases, which consisted of both positive and negative 



 

29 

observations, were sourced from Geyin and Maurer (2021a), who compiled from the literature all 

CPT-based case histories from all earthquakes in the U.S. to date. Namely, the (i) 1971 Mw7.6 San 

Fernando; (ii) 1979 Mw7.6 Imperial Valley; (iii) 1981 Mw5.9 Westmoreland; (iv) 1983 Mw6.9 Borah 

Peak; (v) 1987 Mw6.2 Elmore Ranch; (vi) 1987 Mw6.5 Superstition Hills; (vii) 1989 Mw7.6 Imperial 

Valley; and (viii) 1994 Mw6.9 Northridge earthquakes. In the resulting compilation, liquefaction 

manifestations were observed in 57 percent of cases and were not observed in the remaining 43 

percent. The four geospatial models were applied to each event, and AUC values were computed for 

the composite dataset, as given in table 3.2. In this analysis, the ML/DL models performed much 

better than RB20, which had an AUC near 0.5, an efficiency akin to random guessing. Of the 

models developed in this study, the ML model performed best (AUC = 0.765). In contrast to the 

initial series of tests, however, those using this second dataset might have been biased in favor of 

the ML/DL models, since some of the 101 sites held CPTs included in the dataset of the 1,712 used 

in model development. While these tests provided another datapoint for consideration, wherein it is 

known with confidence that the field observations were correctly classified, we prefer not to glean 

definitive new conclusions, given the possibility of bias and the small size of the dataset.  

Lastly, to assess whether the findings presented thus far might change with consideration of 

finite-sample uncertainty, P-values were computed using the nonparametric method of DeLong et 

al. (1988) to assess whether differences in AUC could result by chance (i.e., due to limited field 

data) and not because one model was more efficient than another. The P-values computed by this 

approach were probabilities that two AUC samples could have come from the same distribution. 

Since this approach required AUC normality, Anderson-Darling and Lilliefors tests (Anderson and 

Darling 1952; Lilliefors 1967) were used to confirm that all samples came from a normal 

distribution. P-values were computed to compare each model to all others in the six regional 

analyses and in the dataset of CPT case histories. These values, which indicated whether differences 

in model performance were statistically significant, are presented in table 3.3. A significance level 

of 0.05 was adopted, such that P-values below 0.05 were deemed significant. All else being equal, 

small P-values could be expected when: (i) differences between two AUC values were large; or (ii) 

the uncertainties of AUC values were small; or (iii) distributions have high correlation. Using this 

criterion, table 3.3 compares all model pairs and identifies which was significantly better. The 

model with the better AUC, as reported in table 3.2, is indicated in table 3.3 via the cell shading. If 

the cell is shaded orange, the model in the left column was better, whereas if the model in the top 
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row was better, the cell is shaded grey. The values given in each cell are the P-values; those less 

than 0.05 are highlighted via bold font and a red border. Table 3.3 can thus be used to determine 

whether differences in model performance, as first presented in table 3.2, were statistically 

significant. Notable observations from table 3.3 are as follows:  

(i) In the initial series of six events at regional scale, the Ensemble model was significantly 

better than RB20 in two events (Mineral and Ridgecrest), RB20 was significantly better 

than the Ensemble model in one event (Northridge), and the two models were 

statistically indifferent in the remaining three (Loma Prieta, Nisqually, and San Simeon).  

(ii) In the analysis of CPT case history sites, the Ensemble, ML, and DL models were 

significantly better than RB20.  

Collectively, these results suggest that the ML/DL models, which were trained on a modest 

dataset, predicted ground failure with efficiency that was similar to or better than that of RB20 and 

thus warrant further application, evaluation, and development. And, as is common in the prediction 

of ground motions, storm tracks, and other natural hazards, the proposed prediction models could 

be ensembled with other geospatial liquefaction models, thereby capturing the epistemic 

uncertainty of model development.
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Table 3.3 P-value matrix to compare model performance. ML = machine learning model; DL = deep learning model; RB20 = 
Rashidian and Baise (2020); and ENS = ensemble of ML and DL models, as described in the text 

Statistically 
Better ↑ Nisqually Loma Prieta San Simeon Northridge Ridgecrest Mineral CPT Case Histories 

 ←   DL RB20 ENS DL RB20 ENS DL RB20 ENS DL RB20 ENS DL RB20 ENS DL RB20 ENS DL RB20 ENS 

N
is

qu
al

ly
 ML 0.484 0.285 0.405                                     

DL   0.221 0.473    
 

   
 

 
       

    

RB20     0.334       
   

 
 

       
    

L
om

a 
Pr

ie
ta

 

ML      0.004 0.002 0.000                  

DL       0.138 0.596                  

RB20 
    

   0.278 
                   

Sa
n 

Si
m

eo
n ML         0.000 0.370 0.341               

DL          0.000 0.000               

RB20        
   0.321                 

N
or

th
ri

dg
e ML            0.440 0.055 0.613            

DL             0.003 0.279            

RB20           
   0.036              

R
id

ge
cr

es
t ML               0.001 0.017 0.002         

DL                0.015 0.341         

RB20                 0.016           

M
in

er
al

 ML                  0.124 0.001 0.666      

DL                   0.396 0.121      

RB20                    0.002       

C
PT

 C
as

e 
H

is
to

ri
es

 ML                     0.009 0.000 0.057 

DL                      0.000 0.004 

RB20                                         0.000 

*Cell values are the P-values (i.e., probabilities) that AUC samples from two prediction models could have come from the same parent distribution (i.e., be statistically indifferent). The 
model with better AUC, as reported in Table 4, is indicated via the cell shading. Values less than 0.05 are deemed “significant” and are highlighted via bold font and a red border.  
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3.2. Software Implementation 

Arguably, a limitation of any ML/DL model is the lack of a defined analytical expression 

easily ported and executed via hard copy. By corollary, simple interpretations of model structure 

and form are also generally lacking. While these detractions may be significant to traditionalists, 

it is clear the use of algorithmic learning will only grow in the field of geotechnics and 

geohazards, given its demonstrated capabilities when provided with large datasets. It is critical, 

however, that trained ML/DL models be provided as code, ideally in a format accessible to a 

broad userbase. Despite this necessity, enumerable ML/DL models have been published without 

code, meaning that while a model may be available for use by the respective developers, it is not 

easily accessed by the broader community and is therefore not readily applied, tested, or 

improved upon by others.  

To facilitate user adoption and evaluation, the ML, DL, Ensemble, and RB20 models 

were programmed into RapidLiq (Geyin and Maurer, 2021b), a new Windows software program 

with a simple-to-use interface (figure 3.9). While the Rashidian and Baise (2020) model is 

widely referenced, it is not commonly implemented by individual users because of the predictor 

variables that must first be compiled. These variables, and those of the proposed models, are 

compiled within RapidLiq, making user implementation trivial. The only required input is a 

ShakeMap of ground-motion parameters (i.e., PGA, PGV, Mw), either in Extensible Markup 

Language (.xml) or Geotagged Image File (.tiff) format. The first is easily downloaded from the 

USGS earthquake catalog (https://earthquake.usgs.gov/earthquakes/search/) minutes after an 

earthquake, or for numerous future scenario events. The second is a more general, flexible 

format, allowing for motions from various sources to be analyzed. The software then extracts 

predictor variables across the ShakeMap extents and outputs geotiff files mapping the 

probabilities of liquefaction-induced ground failure. These files may be viewed within the 

software or explored in greater detail using GIS or one of many free geotiff web explorers (e.g., 

http://app.geotiff.io/). The software also allows for tabular input, should a user wish to enter 

specific sites of interest and ground-motion parameters at those sites, rather than study the 

regional effects of an earthquake. At present, RapidLiq operates in the contiguous U.S. and 

completes predictions within 10 s for most events. 
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Figure 3.9 User interface of RapidLiq (Geyin and Maurer, 2021b), which runs the ML, DL, 

Ensemble, and RB20 models.  RapidLiq may be downloaded from: https://doi.org/10.17603/ds2-
4bka-y039 

3.3. Modeling Limitations and Uncertainties 

The geospatial models developed and tested herein are best suited for regional-scale 

applications where subsurface testing is infeasible (e.g., disaster simulation and loss estimation; 

planning and policy development; and emergency response and reconnaissance) or for 

preliminary site assessment in advance of subsurface testing. While such models have recently 

been adopted for a variety of uses, they are not intended to guide engineering design and do not 

replace the need for rigorous site-specific analyses of liquefaction hazard. In this regard, the 

proposed models predict liquefaction at a relatively coarse spatial resolution, given the 

resolutions of the geospatial predictor variables (see table 3.2), and can thus easily fail to capture 

more localized, small-scale features that correlate to higher or lower liquefaction hazard. 

https://doi.org/10.17603/ds2-4bka-y039
https://doi.org/10.17603/ds2-4bka-y039
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Inherently, the findings presented herein are tied to the data analyzed. The applicability 

of these findings to other earthquakes elsewhere – particularly in regions underrepresented in 

model training – is unknown. Similarly, using the models beyond the range of the predictor 

variables studied herein (table 3.2) could likewise introduce greater uncertainty. In addition, it 

should be emphasized that “ground failure,” the ultimate prediction target, refers to free field 

liquefaction-induced surface settlement, cracking, and ejecta on ground that is generally level. 

Users should understand the limitations of the LPI manifestation model to predict lateral 

spreading, which is a distinctly damaging expression influenced by complex subsurface and 

topographic features. Given that LPI and other similar manifestation models may be poor 

predictors of lateral spreading (e.g., Maurer et al., 2015b; Rashidian and Gillins, 2018), the 

proposed models may likewise predict it poorly. In this regard, the ground-failure datasets on 

which the models were tested might include lateral spreads, which could have the effect of 

reducing the measured model efficiency. Moreover, the proposed models do not explicitly 

predict damage to specific infrastructure types or assets, which would require detailed site and 

asset-specific modeling. In this respect, liquefaction could trigger at depth and damage 

infrastructure without otherwise manifesting or could manifest without otherwise causing 

damage.  

As discussed herein, the performance of any geospatial model is inherently tied to the 

resolution and accuracy of predictor variables, some of which are themselves predictions rather 

than measurements (e.g., the depth of groundwater). Inherently, the accuracy of liquefaction 

predictions is related to the accuracy of inputs, with some models having greater sensitivity to 

specific inputs. In the present effort, measurement and modeling uncertainties were not 

considered, and as such, the model outputs should be considered to be median probabilities of 

ground failure. This should not be interpreted to mean that uncertainties do not exist. Among 

other uncertainties that could be considered in the future, ShakeMap IMs are uncertain; the 

prediction of LPI via geospatial variables is uncertain; and LPI is an uncertain predictor of 

ground failure. In the future, ML/DL techniques (e.g., Gaussian Process Regression) could be 

used to account for these uncertainties and make probabilistic predictions. Additionally, the most 

efficient geotechnical models for predicting liquefaction will inevitably change over time. In this 

regard, the proposed approach could be conditioned on models other than LPI, to include 

emergent mechanistic methods that may better capture the system-level response of soil profiles 
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(e.g., Cubrinovski et al., 2019; Bassal and Boulanger, 2021; Hutabarat and Bray, 2021). For the 

present moment, the models proposed herein appear to perform as well as, and potentially better 

than, the current state-of-practice geospatial model (i.e., RB20), but they were developed using 

an altogether different approach, and thus warrant further application. Ultimately, additional tests 

in past or future events are needed to confirm the findings presented herein and summarized in 

Chapter 5.      
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CHAPTER 4. APPLICATION TO BRIDGE SITES IN WASHINGTON STATE 

To demonstrate application of the developed models to transportation infrastructure 

(whether in advance of an earthquake for planning and mitigation, or immediately after an event 

for response and recovery), the models were used to predict liquefaction-induced ground failure 

at bridge sites in Washington state affected by a magnitude 9, Cascadia Subduction Zone 

earthquake.  

4.1. Simulated Cascadia Subduction Zone Ground Motions 

Researchers at the United States Geological Survey (USGS) and the University of 

Washington (UW) collaborated to produce 30 sets of synthetic seismograms of magnitude 9 

Cascadia Subduction Zone earthquakes. These ground motion simulations were produced by 

combining synthetic seismograms derived from 3D finite‐difference simulations with finite‐

source, stochastic synthetics (Frankel et al. 2018). The 30 synthetic seismograms included a 

range of rupture parameters to capture a wide range of possible M9 events (Frankel et al. 2018). 

Varied rupture parameters included the hypocenter of the motion, the rupture velocity, and the 

magnitude and location of subevents (Wirth et al. 2018). Using Pacific Northwest shear-wave 

velocity profiles, soil-adjusted ground motions were produced using equivalent linear site 

response analysis (de Zamacona 2019). Predicted maximum shear strains within the profiles 

were generally below proposed limits for judging the credibility of equivalent linear site-

response analyses (e.g., Kaklamanos et al. 2013). Nonetheless, the possibility persists, for select 

motions at select sites, that the equivalent-linear treatment of nonlinear soil behavior could result 

in differences between the motions predicted by de Zamacona (2019) and studied herein, and 

those that might be produced using other treatments of nonlinear behavior. Many additional 

details pertaining to the simulated motions may be found in Frankel et al. (2018), Wirth et al. 

(2018), de Zamacona (2019), and Kortum et al. (2021).   

4.2. Predictions of Ground Failure at Bridge Sites 

Using the RB20, ML, DL, and Ensemble models, probabilities of liquefaction-induced 

ground failure were predicted at the locations of 5,020 bridges in Washington state, as compiled 

from the National Bridge Inventory. These predictions were made for each of the 30 M9 ground-

motion simulations. As an example, predictions made by the Ensemble model are mapped across 

Washington state in figure 4.1 for one of the 30 ground-motion simulations. 
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Figure 4.1 Probability of ground failure in one of 30 M9 earthquake simulations, as computed 

using the proposed ML/DL Ensemble model 
 

To arrive at an initial, surficial understanding of liquefaction hazard at bridge sites, 

predictions from all 30 ground-motion simulations were coalesced in the form of a median 

prediction at every location. Mapped in figure 4.2, for each of the 5,020 bridges, is the median 

probability of ground failure in an M9 CSZ event, as computed by the Ensemble model. 

The most salient results of these analyses included the following: (i) the median 

probability of ground failure ranged from 0 percent (800 bridges) to 72 percent (three bridges); 

(ii) 13 bridges had at least a 70 percent probability of ground failure; (iii) 218 bridges had at least 
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a 60 percent probability of ground failure; and (iv) 795 bridges had at least a 50 percent 

probability of ground failure. In general, bridges on sites with the greatest probability of ground 

failure were located either on the Washington Coast (particularly near rivers, estuaries, and bays 

surrounded by flat ground) or in similar settings within the Puget Sound. Shown in figure 4.3 are 

select bridges along the I-5, I-405, and I-90 corridors in the vicinity of Seattle. Considering this 

subset, bridges with the largest probability of ground failure (50 percent to 60 percent) were in 

the Snohomish River Delta near Everett, as indicated in figure 4.3 via a red box. This area is 

shown in greater detail in figure 4.4. Additionally, observed liquefaction features in this area, as 

discovered and compiled by Bourgeois and Johnson (2001), are also mapped in figure 4.4. While 

the prevalence of these features, which predate modern settlement (ca. 1850), is unknown, their 

extent and severity speak to the high liquefaction hazard of the area. As an example, one such 

feature is shown in figure 4.5, as photographed during a site investigation by the authors. Similar 

liquefaction features were observed around the abutments of I-5 and SR 529 bridges, which may 

be seen on the horizon in figure 4.5. While discrepancies between observed and predicted 

liquefaction would not necessarily discredit the latter, their agreement nonetheless lent credence 

to the developed models and results.    
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Figure 4.2 Median probability of ground failure at 5,020 bridge sites in Washington state, as 

computed using the proposed ML/DL Ensemble model 
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Figure 4.3 Median probability of ground failure at select bridge sites along the I-5/I-90 corridors 

in Washington state, as computed using the proposed ML/DL Ensemble model. Among the 
bridges considered, those with the greatest probability of ground failure were found in the 

Snohomish River delta, denoted by a red box and shown in greater detail in figure 4.4 
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Figure 4.4 Median probability of ground failure at bridge sites near the Snohomish River delta, 

as computed using the proposed ML/DL Ensemble model. Also shown are observed liquefaction 
features in the area, as compiled by Bourgeois and Johnson (2001) 
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Figure 4.5 A 1-m diameter liquefaction vent along the Snohomish River. Visible on the horizon 
is an I-5 bridge. Other similar features surround the I-5 bridge abutments, as well as those of 

other area bridges. 
 

Notably, these analyses did not consider specific bridge designs or site-specific ground 

improvement works that may or may not have been carried out. The analyses did, however, 

provide a ranked list of bridge sites most likely to be damaged by ground failure. Select ground 

truthing lent credence to the developed models and predictions. These predictions may be further 

investigated (e.g., via network analyses) to identify critical corridors likely to experience outages 

and/or to prioritize bridges for more advanced studies and possible earthquake retrofitting. While 

the results serve an important purpose and may be made rapidly for any past or future 

earthquake, they are inherently first-order in nature.  In-situ test data and subsequent liquefaction 

modelling would be needed to confirm predictions at any bridge site 
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CHAPTER 5. CONCLUSIONS 

This study proposed a new approach to geospatial modelling of soil liquefaction that is 

driven by algorithmic learning but pinned to a mechanistic framework. In effect, subsurface 

measurements are predicted remotely within the framing of a popular model for probabilistically 

predicting ground failure. This merges a body of knowledge built over the last 50 years with the 

potential of machine and deep learning to predict subsurface conditions remotely. As 

hypothesized herein, this modelling approach has potential advantages over others used to date. 

Using this approach, three models termed ML, DL, and Ensemble were trained on a dataset of 

CPTs distributed across the U.S. using a modest set of ten geospatial predictor variables. These 

models were shown to provide efficient predictions in unbiased, forward application and were 

tested against the RB20 geospatial model. Collectively, these tests indicated that the proposed 

models predict ground failure with an efficiency similar to or better than that of RB20 and thus 

warrant application and further evaluation. The proposed and RB20 models are available in 

RapidLiq, a free Windows program that may be downloaded from https://doi.org/10.17603/ds2-

4bka-y039. 

Ultimately, significantly more in-situ geotechnical tests are available for model training, 

both in the U.S. and specifically in Washington state. The performance of the model in 

Washington State was particularly notable (e.g., for the 2001 Nisqually earthquake), given the 

lack of training data sourced from the region. Whereas ground-failure inventories are likely to 

grow slowly, with data from perhaps several events per year impacting a small fraction of Earth, 

the subsurface data needed to train the proposed approach exist in massive quantities. These data 

require compilation across different formats (some requiring digitization) and test types (e.g., 

CPTs and SPTs), as well as access from various entities, both public and private. However, 

community geotechnical datasets in New Zealand, Austria, Germany, and Italy, for example, 

currently contain more than 40,000 CPTs. Similar datasets are likely to be created elsewhere. 

Approximately 1,000 CPTs may be publicly available in Washington state, along with many 

thousands or tens of thousands of SPTs, but these tests all generally require digitization. 

Likewise, the quantity of prospective geospatial predictor variables exceeds that utilized in this 

study. Expanding upon the general approach proposed herein, improved geospatial liquefaction 

models could thus be developed for state, regional, or national application in a subsequent study. 

https://doi.org/10.17603/ds2-4bka-y039
https://doi.org/10.17603/ds2-4bka-y039
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In this regard, Washington state shows particular promise for a state-specific model, given the 

potential availability of large quantities of training data.  
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APPENDIX A: RAPIDLIQ USER MANUAL 

 

 
RapidLiq User Manual 

v.1.0. 
 

A.1 Summary 

RapidLiq is a Windows software program for predicting liquefaction-induced ground 

failure using geospatial models, which are particularly suited for regional scale applications such 

as (i) loss estimation and disaster simulation; (ii) city planning and policy development; (iii) 

emergency response; and (d) post-event reconnaissance (e.g., to remotely identify sites of 

interest). RapidLiq v1.0 includes four such models. One is a logistic regression model developed 

by Rashidian and Baise (2020) that has been adopted into United States Geological Survey 

(USGS) post-earthquake data products but that is not often implemented by individuals because 

of the geospatial variables that must be compiled. The other three models are the machine and 

deep learning models developed in this report. All necessary predictor variables are compiled 

within RapidLiq, making user implementation trivial. The only required input is a ground motion 

raster easily downloaded within minutes of an earthquake, or available for enumerable future 

earthquake scenarios. This gives the software near-real-time capabilities, such that ground failure 

can be predicted at regional scale within minutes of an earthquake. The software outputs geotiff 

files mapping the probabilities of liquefaction-induced ground failure. These files may be viewed 

within the software or explored in greater detail using GIS or one of many free geotiff web 

explorers (e.g., http://app.geotiff.io/). The software also allows for tabular input, should a user 

wish to enter specific sites of interest and ground-motion parameters at those sites, rather than 
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study the regional effects of an earthquake. RapidLiq v.1.0 operates in the contiguous U.S. and 

completes predictions within 10 seconds for most events. 

A.2 Installation and Running RapidLiq 

Install RapidLiq using “RapidLiqv1_Installer.exe.” If prompted to do so, extract all 

zipped contents prior to continuing the installation. In addition, you may be warned by the 

Windows OS that .exe files from unknown sources could be harmful. Please ignore any such 

message and click “run anyway.” There are no specific system requirements. Four GB of RAM 

will be enough for most scenarios, but if high resolution rasters with a large land domain will be 

used (2 million + pixels), at least 8 GB of RAM is recommended. Please note that the software 

will initiate slowly the first time it is used, since some of the installation process occurs during 

first use of the software. The software will thereafter open more quickly.  
 

A.3 Using RapidLiq  

The RapidLiq user interface has two main tabs that perform the same analyses with 

different types of inputs. Both use a simple three-step process wherein (1) an input file is loaded; 

(2) model parameters are extracted; and (3) analyses are performed.   

The first tab (Raster) requires a raster file in either .xml (Extensible Markup Language) 

or .tif (GeoTagged Image File) format. This option is best for studying the regional effects of an 

earthquake. The first format can be downloaded from the USGS earthquake catalog 

(https://earthquake.usgs.gov/earthquakes/search/)  minutes after an event, or from the USGS 

scenario catalog (https://earthquake.usgs.gov/scenarios/catalog/) for future scenario events. The 

second format (.tiff) is a more general, flexible format, allowing for motions from various 

sources to be analyzed. In either case, the software extracts predictor variables across the 

ShakeMap extents and outputs geotiff files mapping the probabilities of liquefaction-induced 

ground failure. These output files (saved in the same directory as the input file) may be viewed 

within the software or explored in greater detail using GIS or one of many free geotiff web 

explorers (e.g., http://app.geotiff.io/).  

The second tab (tabular) allows for tabular input, should a user wish to enter specific sites 

of interest and ground-motion parameters at those sites, rather than study the regional effects of 

an earthquake. With this option, an .xlsx input file is required with the following ordered 

columns: (1) Latitude (WGS84); (2) Longitude (WGS84); (3) Moment Magnitude (Mw); (4) 

Peak Ground Acceleration, PGA, in g; and (5) Peak Ground Velocity, PGV, in cm/sec. With this 

https://earthquake.usgs.gov/earthquakes/search/
https://earthquake.usgs.gov/scenarios/catalog/
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option, the software creates an .xlsx output file within the same directory where the input file is 

located. 

Use of the software is next demonstrated via two examples.  

A.3.1 Example 1. Input Type: .xml Raster 

Extensible Markup Language (.xml) ground motion rasters are available from the USGS 

for past earthquakes (https://earthquake.usgs.gov/earthquakes/search/) and future scenario events 

(https://earthquake.usgs.gov/scenarios/catalog/). These files contain all necessary seismic data, 

including earthquake magnitude and the regional distribution of shaking intensities. Once on an 

event page, navigate to the event’s “ShakeMap.”  

 

 

Figure A.1 Navigating to ShakeMaps within the USGS event catalogs 
 

Next, below the map of ShakeMap information, select “Downloads.” 

https://earthquake.usgs.gov/earthquakes/search/
https://earthquake.usgs.gov/scenarios/catalog/
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Figure A.2 Select the Downloads dropdown menu within a given ShakeMap 
 

From the dropdown menu, a multitude of download options will appear. The exact position 

and title of the .xml file may change with time. For the 1989 Loma Prieta earthquake, for example, 

it appears as shown in figure A.3. 

 

 

Figure A.3 Location and name of XML grid file for 1989 Loma Prieta, California, earthquake 
 

For the 2020 Stanley, Idaho earthquake, it appears as shown in figure A.4. 
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Figure A.4 Location and name of XML grid file for 2020 Stanley, Idaho, earthquake 
 

Open and save the .xml file to any desired file directory. Please note that an “OutFiles” 

subfolder will be created in the same directory. Here, the program outputs will be saved.  

In RapidLiq, under the “Raster” tab, select the “Input ShakeMap” button. Specify the 

input type as .xml and direct RapidLiq to the .xml file of your choosing. Please wait several 

seconds as the file is loaded. RapidLiq will inform the user whether the input was successful. 

Press OK to continue.  

An interactive map of the PGA raster with a scalebar will appear on the screen, as shown 

in figure A.5.  
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Figure A.5 RapidLiq interface after Raster input 
 

 

Next, select the “Extract Model Parameters” button to gather all model variables over the 

ShakeMap extents. In RapidLiq v1.0, these include predicted VS30 (Heath et al., 2020); predicted 

ground water depth (Fan and Miguez-Macho, 2020); measured distance to river (Lehner et al., 

2006) and measured distance to coast (NASA, 2012); predicted depth to bedrock (Shangguan et 

al. 2017); measured annual precipitation (Fick and Hijmans, 2017); and the predicted (binomial) 

presence of unconsolidated soil, sandy soil, clayey soil, and silty soil, as obtained from the 

USGS National Geologic Map compilation (Horton et al. 2017).  

Please wait several seconds until extraction is complete. After the process finishes, a pop-

up window should inform the user whether the parameter extraction was successful. Press OK to 

continue. To compute predictions of liquefaction-induced ground failure using all available 

models, select the “Run RapidLiq” button. Rapidliq v.1.0 contains four models. These include 

the logistic regression model of Rashidian and Baise (2020) and the deep learning (DL), machine 
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learning (ML), and Ensemble (ENS) models proposed by Geyin et al. (2021). All four models 

are described in detail by Geyin et al. (2021).  

All calculations should be performed within several seconds After the predictions are 

made, a window informs the user whether the calculation process was successful. Press OK to 

plot the model predictions on the screen, as shown in figure A.6. Results from each model, by 

default, are also saved to the aforementioned “OutFiles” folder as separate geotiff (.tiff) files. 

 

 

Figure A.6 RapidLiq output from all 4 models 

 

To explore the outputs in greater detail (e.g., to make custom maps, or to further explore 

and study the predictions), the output files are easily opened in GIS or one of many free geotiff 

web explorers (e.g., http://app.geotiff.io/). As an example, results for the 2011 Mineral, Virginia, 

earthquake are shown in figure A.7 as produced by the geotiff.io web explorer, which has several 

simple statistical analysis tools built in.  
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Alternatively, but following a very similar process, RapidLiq allows for geotiff (.tiff) 

input files, which might be obtained from various sources (e.g., ground motion simulations). 

Using this approach, .tiff files containing PGA and PGV are separately input, and the earthquake 

magnitude is entered in a text window. 

 

 

Figure A.7 Exploring RapidLiq predictions with the http://app.geotiff.io/) web explorer 

 

A.3.2. Example 2. Input type: Tabular 

The software also allows for tabular input, should a user wish to enter specific sites of 

interest and ground-motion parameters at those sites, rather than study the regional effects of an 

earthquake. To use this option, select the “Tabular” tab from the user interface and create an 

.xlsx file with columnar data in the order of (1) Latitude (WGS84); (2) Longitude (WGS84); (3) 

Moment Magnitude (Mw); (4) Peak Ground Acceleration, PGA, in g; and (5) Peak Ground 

Velocity, PGV, in cm/sec. An example input file is shown in Figure A.8. Import this table to 

RapidLiq by selecting the “Input Table” button. RapidLiq will inform the user whether the 

import is successful and display the tabular data on the upper right side of the user interface. 

http://app.geotiff.io/
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Next, select the “Extract Model Parameters” button to compile necessary model inputs. This may 

take several seconds depending on the size of the dataset. After extraction is complete, 

parameters at each site of interest are displayed on the lower right side of the user interface. Press 

“Run RapidLiq” to compute the predictions using each of the four models. A table of results will 

appear, and a new timestamped .xlsx file will be created in the directory where the input file is 

located.  

 

 

Figure A.8 Example input table for RapidLiq tabular analyses 
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